Principal Bundles Admitting a Holomorphic Connection

نویسنده

  • INDRANIL BISWAS
چکیده

LetG be a connected affine algebraic reductive group over C. Let P be a holomorphic principal G bundle on M (i.e. the transition functions of P are holomorphic). Assume that P admits a holomorphic connection D compatible with the holomorphic structure. This means the following : D is a holomorphic 1-form on P with values in the Lie algebra, g, of G, such that D is invariant for the action of G on P , and, when restricted to the fibers of P , this form coincides with the holomorphic Maurer-Cartan form. Using the natural identification of the holomorphic tangent space of P with its real tangent space, the holomorphic connection D gives a G connection on P .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant bundles and adapted connections

Given a complex manifold M equipped with a holomorphic action of a connected complex Lie group G, and a holomorphic principal H–bundle EH over X equipped with a G–connection h, we investigate the connections on the principal H–bundle EH that are (strongly) adapted to h. Examples are provided by holomorphic principal H– bundles equipped with a flat partial connection over a foliated manifold.

متن کامل

Holomorphic Connections on Filtered Bundles over Curves

Let X be a compact connected Riemann surface and EP a holomorphic principal P–bundle over X , where P is a parabolic subgroup of a complex reductive affine algebraic group G. If the Levi bundle associated to EP admits a holomorphic connection, and the reduction EP ⊂ EP × P G is rigid, we prove that EP admits a holomorphic connection. As an immediate consequence, we obtain a sufficient condition...

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Differential Operators and Flat Connections on a Riemann Surface

We consider filtered holomorphic vector bundles on a compact Riemann surface X equipped with a holomorphic connection satisfying a certain transversality condition with respect to the filtration. If Q is a stable vector bundle of rank r and degree (1−genus(X))nr , then any holomorphic connection on the jet bundle Jn(Q) satisfies this transversality condition for the natural filtration of Jn(Q) ...

متن کامل

Homogeneous holomorphic hermitian principal bundles over hermitian symmetric spaces

We give a complete characterization of invariant integrable complex structures on principal bundles defined over hermitian symmetric spaces, using the Jordan algebraic approach for the curvature computations. In view of possible generalizations, the general setup of invariant holomorphic principal fibre bundles is described in a systematic way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008